Effects of surface tension on the suction forces generated by miniature craters
نویسندگان
چکیده
There are emerging demonstrations that microor nano-craters engineered on polymer surfaces can enable enhanced adhesion. In the past, we have developed a framework for quantifying the suction forces produced by isolated macroscopic craters neglecting surface effects. In this paper, we take surface tension into consideration because it plays a significant role in miniature craters on soft polymers. We have derived linear and nonlinear elastic solutions for the elasto-capillary distortion in miniature hemispherical craterswhen they are demolded from the template. By implementing a user-element subroutine in finite elementmodeling (FEM) software ABAQUS, we have also simulated the demolding, compression, and unloading processes of the craters subjected to surface tension under large deformation. With the simulated volume changes of the crater, pressure drop and suction force can be deduced. We find that surface tension induced crater contraction has a negative effect on the generation of suction forces. We discover that reinforcing the crater surface by a thin and stiff shell can help sustain the crater shape after demolding. The effects of shell thickness and stiffness are quantitatively investigated through FEM and optimal parametric combinations are identified. © 2017 Elsevier Ltd. All rights reserved.
منابع مشابه
Suction effects in cratered surfaces.
It has been shown experimentally that cratered surfaces may have better adhesion properties than flat ones. However, the suction effect produced by the craters, which may be chiefly responsible for the improved adhesion, has not been properly modelled. This paper combines experimental, numerical simulation and analytical approaches towards developing a framework for quantifying the suction effe...
متن کاملBuckling of nanotubes under compression considering surface effects
In this paper, the modified Euler-Bernoulli beam model is presented to examine the influence of surface elasticity and residual surface tension on the critical force of axial buckling of nanotubes in the presence of rotary inertia. An explicit solution is derived for the buckling loads of microscaled Euler beams considering surface effects. The size-dependent buckling behavior of the nanotube d...
متن کاملLennard-Jones Energy Parameter for Pure Fluids from Scaled Particle Theory
By considering the fact that the surface tension of a real fluid arises from a combination of both repulsive and attractive forces between molecules, a new expression for the interfacial tension has been derived from scaled particle theory (SPT) based on the work of cavity formation and the interaction energy between molecules. At the critical temperature, the interfacial tension between c...
متن کاملBuckling of nanotubes under compression considering surface effects
In this paper, the modified Euler-Bernoulli beam model is presented to examine the influence of surface elasticity and residual surface tension on the critical force of axial buckling of nanotubes in the presence of rotary inertia. An explicit solution is derived for the buckling loads of microscaled Euler beams considering surface effects. The size-dependent buckling behavior of the nanotube d...
متن کاملA Mathematical Model for Crater Defect Formation in a Drying Paint Layer.
Certain deep indentations observed in dry coatings are referred to as "craters". They are believed to arise from gradients in the coating surface tension. A mathematical model of surface-tension-gradient-driven flow, using the lubrication approximation for thin layers, is developed to study the formation of craters. The paint is modeled as consisting of an evaporating "solvent" part and a nonvo...
متن کامل